Exam ID.			$\overline{}$]	Candidates must write the Set No.		
					on the title page of the OMR Sheet.		

DAV PUBLIC SCHOOLS, ODISHA ZONE –I PA-II EXAMINATION, 2021-22

- Check that this question paper contains 08 printed pages.
- Set number given on the right-hand side of the question paper should be written on the OMR SHEET by the candidate.
- Check that this question paper contains 50 questions.

CLASS - IX

SUB: MATHEMATICS (041)

Time: 90 Minutes Maximum Marks: 40

General Instruction:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.
- 3. Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

PA-II/MATH-IX/SET-1 Page 1 of 8

Section – A consists of 20 questions. Attempt any 16 questions from this section. The first attempted 16 questions would be evaluated.

Q1. The value of 2.999.... in the form of $\frac{p}{a}$, where p and q are integers and $q \neq 0$.

(A)
$$\frac{2999}{100}$$

(B)
$$\frac{19}{10}$$

(D)
$$\frac{26}{9}$$

Q2. The value of $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to

(A)
$$\sqrt{2}$$

$$(C)$$
 4

Q3. Any solution of the linear equation 2x + 0y + 9 = 0 in two variables is of the form.

(A)
$$\left(\frac{-9}{2}, m\right)$$
 (B) $\left(n, \frac{-9}{2}\right)$ (C) $\left(0, \frac{-9}{2}\right)$

$$(B)\left(n,\frac{-9}{2}\right)$$

$$(C)\left(0,\frac{-9}{2}\right)$$

$$(D) (-9, 0)$$

Q4. The graph of the linear equation 2x + 3y = 6 is a line which meets the x- axis at the points

Q5. The point which lies on the line $y = \frac{-3}{2}x + 5$ is

$$(B)(-2,2)$$

(C)
$$(6, -4)$$

$$(D) (-4, 11)$$

Q6. If y coordinate of a point is zero, then this point will always lie

Q7. An exterior angle of a triangle is 1050 and its two interior opposite angles are equal. Each of those equal angles is

(A)
$$37\frac{1}{2}^{0}$$

(B)
$$52\frac{1}{2}^{0}$$

(B)
$$52\frac{1}{2}^{0}$$
 (C) $72\frac{1}{2}^{0}$ (D) 75^{0}

Q8. The sum of the exterior angles of the triangle is-


(A)
$$90^{0}$$

(B)
$$180^{\circ}$$

(C)
$$270^{\circ}$$

(D)
$$360^{\circ}$$

Q9. In the given figure, POQ is a straight line. Then the value of x is

Q10. trian		_	triar	ngle are in 1	the ra	tio 2: 4: 3.	The s	smallest angle of the
	_		(B)	40^{0}	(C)	10^{0}	(D)	20^{0}
								then the angles are None of these
Q12.			-	tenuse of an $12\sqrt{2}$ cm			_	vith area 72 cm ² is 12.5 cm
Q13.	pai	e edges of a nting one of it Rs 22.50	ts surf	faces at the r	ate of	50 paise per	cm ² i	25 cm. The cost of s Rs. 90
Q14.	con	ntinuous frequ	iency		n. The	lower-class	limit (imit of a class in a of the class is $m-21$
Q15.								5 is included in (D) None of these
Q16.'	low clas			e lowest clas	ss is 1	0. The uppe	•	tribution is 5 and the s limit of the highest
		simplifying (√2 - √21 (B)			2(5 -	$\sqrt{21}$ (D)	10 -	√21
Q18.		e of equation a		e presents a l y=mx	_			origin is None of these
	ive,	one of the so then surely a First Quadra	portio	_	lies in	-		x is negative and y is
	(C)	Third Quadr	ant		(D)	Fourth Quad	drant	
are-		angle is 20° m						gle, then the angles
((A)	- , - -	(B)	$140^{0}, 40^{0}$	(C)	$60^{\circ}, 120^{\circ}$	(D)	$40^{\circ}, 50^{\circ}$

(A) 20^{0} (B) 25^{0} (C) 30^{0} (D) 35^{0}

SECTION-B

Section – B consists of 20 questions. Attempt any 16 questions from this section. The first attempted 16 questions would be evaluated.

Q21. The product of $(2\sqrt{2} + 5\sqrt{3})$ and $(2\sqrt{4})$ a natural number	$\sqrt{2} - 5\sqrt{3}$) is a (B) an irrational number							
(C) a rational number	(D) both a and c.							
Q22. If $a = \frac{3+\sqrt{5}}{2}$, find the value of $a^2 + \frac{1}{a^2}$ (A) 4 (B) 7	(C) 11 (D) 15							
Q23. The linear equation $5x = 2y$ has (A) a unique solution (C) two solutions	(B) no solution(D) infinitely many solutions							
Q24. The equation of x- axis is of the form $(A) x = 0$ $(B) y = 0$	(C) $x + y = 0$ (D) $x = y$							
Q25. In a \triangle ABC, if $\angle A + \angle B = 110^{\circ}$, $\angle C + (A) 75^{\circ}$ (B) 60°	$\angle A = 135^{0}$, then the value of $\angle A$ is (C) 65^{0} (D) 55^{0}							
Q26. If the sides of a triangle are doubled (A) remains same (C) becomes tripled	then its area (B) is doubled (D) becomes four times							
Q27. The class marks of a frequency distr 10, 12, 14, 16 The class corres (A) 11-13 (B) 13 – 15								
Q28.In a histogram, the areas of rect proportional to the- (A) frequencies (B) class s	angular columns of different classes are ize (C) class mark (D) none of these							
Q29. The point at which the two co-ordina (A) abscissa (B) ordinate	ate axes meet is called the (C) origin (D) Quadrant							
Q30. If one of the angles of a triangle is 130° , then the angle between the bisectors of the other two angles can be (A) 50° (B) 65° (C) 145° (D) 155°								
Q31. Which of the following statements is								

PA-II/MATH-IX/SET-1 Page 4 of 8

(A) A triangle cannot have an obtuse angle and a right angle

(B) A triangle cannot have two obtuse angle

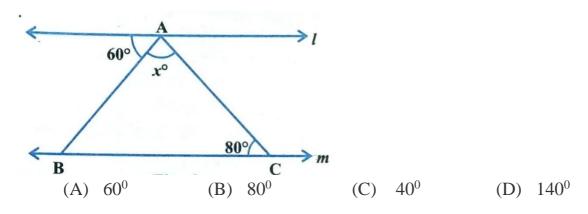
- (C) A triangle can have three acute angles.
- (D) All of these

Q32. A linear equation in two variables is of the form ax + by + c = 0, where a, b and c are real numbers and

(A)
$$a \neq 0, b \neq 0$$

(B)
$$a = 0, b \neq 0$$

(C)
$$a \neq 0, b = 0$$


(D)
$$a = 0, c = 0$$

Q33. The point which lies on y – axis at a distance of 5 units in the negative direction of y - axis is

(C)
$$(0, -5)$$

(D)
$$(-5,0)$$

Q34. In the given figure if $l \parallel m$, then the value of x is

Q35. Two sides of a triangle are 5 cm and 13 cm and its perimeter is 30 cm. The area of the triangle is

$$(A)$$
 30cm²

(C)
$$32.5 \text{ cm}^2$$

(D)
$$65 \text{ cm}^2$$

Q36. To draw a histogram the adjusted frequency for the class 25-45 is-

Class Interval	5-10	10-15	15-25	25-45	45-75
Frequency	6	12	10	8	15
(A) 6	(B)	5	(C) 3	(D) 2	

Q37. In two triangles \triangle ABC and \triangle PQR, $\angle A = 30^{\circ}, \angle B = 70^{\circ}, \angle P = 70^{\circ}, \angle Q = 80^{\circ}$

and AB = RP, then

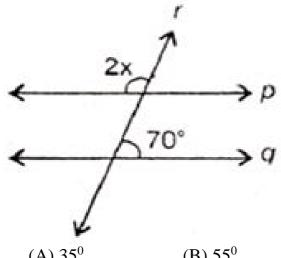
(A)
$$\triangle ABC \cong \triangle PQR$$

(A)
$$\triangle ABC \cong \triangle PQR$$
 (B) $\triangle ABC \cong \triangle QRP$

(C)
$$\triangle ABC \cong \triangle RPQ$$

(D)
$$\triangle ABC \cong \triangle RQP$$

Q38. The sides of a triangle are 34cm, 54cm and 61cm respectively. The length of its longest altitude is


PA-II/MATH-IX/SET-1

(A) $16\sqrt{5}$ cm

(B) $10\sqrt{5}$ cm (C) $24\sqrt{5}$ cm

(D) 28cm

Q39.In the figure, $p \parallel q$. The value of x is:

(A) 35^0

(B) 55^0

 $(C) 70^{0}$

(D) 110^0

Q40. We want to know and collect the percentage of students who passed during the last 10 years of class 10th board examination; the data thus collected is known as a

(A) Primary data (B) Secondary data (C) Frequency data (D) None of these

SECTION -C

Section – C consists of 10 questions bases on two case study of 1 mark each. Attempt any 8 questions from this section. The first attempted 8 questions would be evaluated.

CASE STUDY-1

Ron and Harry are bench mates in class. In Mathematics class, Ron was finding it difficult to simplify $\frac{1}{\sqrt{5-\sqrt{2}}}$. His bench mate Harry gave him a clue to rationalize the denominator by taking a conjugate of $\sqrt{5} - \sqrt{2}$. Ron simplified the expression and also thanked Harry for the help. Harry also gave him approximate values of $\sqrt{5} = 2.236$ and $\sqrt{2} = 1.414$ to find the approximate value of the expression.

> PA-II/MATH-IX/SET-1 Page 6 of 8

Based on the above information answer the following questions:

Q41. What is the conjugate of $\sqrt{5} - \sqrt{2}$?

- $(A) \sqrt{5}$
- (B) $\sqrt{2}$
- (C) $\sqrt{5} + \sqrt{2}$ (D) $\sqrt{5} \sqrt{2}$

Q42.To rationalize $\frac{1}{\sqrt{5-\sqrt{2}}}$ the conjugate has to be multiplied to:

(A) Numerator

- (B) Denominator
- (C) Both Numerator and Denominator
- (D) None of these

Q43. What is the simplified form of the expression that Ron found out?

(A)
$$\frac{\sqrt{5+\sqrt{2}}}{3}$$

(B)
$$\frac{\sqrt{5-\sqrt{2}}}{3}$$

(C)
$$\sqrt{5} + \sqrt{2}$$

(B)
$$\frac{\sqrt{5}-\sqrt{2}}{2}$$
 (C) $\sqrt{5} + \sqrt{2}$ (D) $\sqrt{5} - \sqrt{2}$

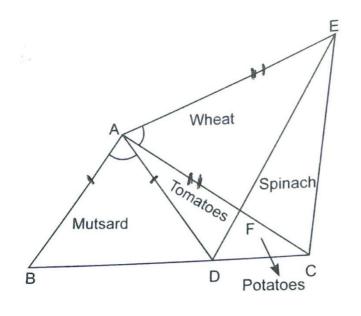
Q44. What is the approximate value of the expression did Ron find after putting the values $\sqrt{5} = 2.236$ and $\sqrt{2} = 1.414$?

(A)2.216

(B) 1.216

(C) 3.216 (D) 0.216

Q45. The number $\sqrt{5} - \sqrt{2}$ is a/an:


- (A) Rational Number
- (B) Natural Number

(C) Integer

(D) Irrational Number

CASE STUDY-2

Shyam has an agricultural field. For winter he planned to cultivate different types of crops. So he divided his quadrilateral field ABDCE into five triangular fields. In \triangle ABD he sowed mustard seeds, in $\triangle ADF$ he sowed tomatoes, in $\triangle FDC$ he sowed potatoes, in $\triangle AEF$ he sowed wheat and in Δ EFC he sowed spinach. The dimensions of the triangles were such that AC=AE, AB=AD and \angle BAD = \angle EAC.

Based on the above information answer the following questions:

Q46.In the above figure $\angle CAB = ?$

- $(A) \angle BAD$
- (B) ∠EAD
- (C)∠EAC
- (D) ∠DAC

Q47. $\triangle CAB \cong \triangle EAD$ by which property of congruency?

- (A) AAS
- (B) SSS
- (C) RHS
- (D) SAS

Q48. Length of BC =?

- (A) DE
- (B) BC
- (C) AD
- (D) CE

Q49.Major of ∠ABC =?

- $(A) \angle ACB$
- (B) ∠AED
- (C) ∠ADE
- (D) ∠EAD

Q50.Major of∠ACB =?

- $(A) \angle ABC$
- (B) ∠AED
- (C) ∠EAD
- (D) ∠ACB

*** ALL THE BEST ***

PA-II/MATH-IX/SET-1 Page 8 of 8