ANNEXURE -

DAV PUBLIC SCHOOLS, ODISHA ZONE

HALF YEARLY EXAMINATION, SUBJECT – MATHEMATICS, CLASS: VI

BLUE PRINT OF QUESTION PAPER

Sl. No	Chapters	MCQs (1 Mark)	Fill in the Blanks (1 Mark)	VSA (1Mark)	SA-I (2 Marks)	SA-II (3 Marks)	LA (4 Marks)	Total
1	Natural Numbers and Whole numbers	2	1	1	1	1	1	13
2	Factors and Multiples	2	1	2	1	1	1	14
3	Integers	2	1	1	1	1	1	13
4	Ratio proportion and unitary method	1	2	0	0	2	1	13
5	Basic Geometrical Concepts	1	0	0	0	1	1	8
6	Line Segments	0	0	0	1	1	0	5
7	Angles	2	0	1	1	1	0	8
8	Transversal and Pairs of lines	0	0	0	1	0	1	6
	TOTAL	1×10=10	$1 \times 5 = 5$	$1 \times 5 = 5$	2×6 =12	3×8=24	4×6=24	80(40)

Α

ANNEXURE -B

DAV PUBLIC SCHOOLS, ODISHA ZONE HALF YEARLY EXAMINATION, CLASS: VI, SUBJECT: MATHEMATICS

Sl. No.	Chapters / units	ESTION WISE ANALY Forms of Question (LA, SA-II, SA-I, VSA, Fill in the blanks, MCQ)	Marks Allotted	(R), (U), (A), (H), (E)
1	Natural Numbers and Whole numbers	MCQ	1	R
2	Natural Numbers and Whole numbers	MCQ	1	R
3	Factors and Multiples	MCQ	1	R
4	Factors and Multiples	MCQ	1	R
5	Integers	MCQ	1	U
6	Integers	MCQ	1	U
7	Ratio proportion and unitary method	MCQ	1	U
8	Basic Geometrical Concepts	MCQ	1	R
9	Angles	MCQ	1	R
10	Angles	MCQ	1	R
11	Natural Numbers and Whole numbers	Fill in the blanks	1	U
12	Factors and Multiples	Fill in the blanks	1	R
13	Integers	Fill in the blanks	1	R
14	Ratio proportion and unitary method	Fill in the blanks	1	U
15	Ratio proportion and unitary method	Fill in the blanks	1	U
16	Natural Numbers and Whole numbers	VSA	1	R
17	Factors and Multiples	VSA	1	R
18	Factors and Multiples	VSA	1	U
19	Integers	VSA	1	U
20	Angles	VSA	1	U

21	Natural Numbers and Whole numbers	SA – I	2	R
22	Factors and Multiples	SA - I	2	U
23	Integers	SA – I	2	А
24	Line Segments	SA – I	2	R
25	Angles	SA – I	2	Creation/HOTs
26	Transversal and Pairs of lines	SA – I	2	А
27	Natural Numbers and Whole numbers	SA - II	3	А
28	Factors and Multiples	SA - II	3	А
29	Integers	SA - II	3	U
30	Ratio proportion and unitary method	SA - II	3	А
31	Ratio proportion and unitary method	SA - II	3	А
32	Basic Geometrical Concepts	SA - II	3	R
33	Line Segments	SA - II	3	А
34	Angles	SA - II	3	HOTs
35	Natural Numbers and Whole numbers	LA	4	А
36	Factors and multiples	LA	4	А
37	Integers	LA	4	А
38	Ratio proportion and unitary method	LA	4	HOTs
39	Basic Geometrical Concepts	LA	4	R
40	Transversal and Pairs of lines	LA	4	R

DAV PUBLIC SCHOOLS, ODISHA ZONE

HALF YEARLY EXAMINATION, CLASS: VI, SUBJECT: MATHEMATICS

MARKING SCHEME

QN NO.	Value Points	Marks Allotted	PAGE NO. OF NCERT/TEXT BOOK
1	(c) 99987	1	7
2	(c) 259	1	3
3	(b) 12	1	26
4	(a) 1	1	24
5	(a) $-10 < -4$	1	50
6	(c) 0	1	51
7	(d) 3 : 5	1	88
8	(b) point of concurrence	1	140
9	(a) a straight angle	1	170
10	(b) 150 ⁰	1	171
11	50	1	12
12	Twin Primes	1	24
13	35	1	58
14	10:1	1	87
15	12	1	83
16	10 million =1 crore	1	01
17	2	1	36
18	$144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$	1	33
19	(-1) + 1 = 0	1	54
20	$90^0 - 59^0 = 31^0$	1	166
21	Smallest Number = 10000039 Largest Number = 99999310	1 1	21
22	$348) 1024 (2) \\ 696 \\ 328) 348 (1) \\ 328 \\ 20) 328 (16) \\ 320 \\ 8) 20 (2) \\ 16 \\ 4) 8 (2) \\ 8 \\ 0 \\ 50, HCF of 348 and 1024 is 4. \\ OR \\ 0R \\ 0R \\ 0R \\ 0R \\ 0R \\ 0R \\ 0R$	1.5 0.5	34
	Sum of digits of the number $= 3 + 4 + 5 + 6 + 7 + 2 = 27$ As 27 is divisible by 9, the given number is divisible by 9.	1	29
23	$(-2)^2 = 4, (-10)^2 = 100$ $(-2)^2 \times (-10)^2 \times (-1) = 4 \times 100 \times (-1) = (-400)$ OR	1 + 1	59
	$325 \times (-641) + 325 \times (-359) \\ = 325 \times [(-641) + (-359)] = 325 \times (-1000) = (-325000)$	1 + 1	

24	(a) $AC - AE = EC$ (b) $ED + BE = BD$	1 1	155
	(a) 0 110°	1	
25	(b) $A \xrightarrow{C} B$	1	165,166
26	\angle BGE and \angle CHF are not corresponding angles. They are called alternate angles.	1	178
	Weight carried by tempo = 482×15 kg Weight carried by Van = 518×15 kg Total weight carried by both tempo and Van = $482 \times 15 + 518 \times 15$ = $15(482 + 518)$ = $15 \times 1000 = 15000$ kg	0.5 0.5 1	13
27	OR Largest 6-digit number = 9999999 999999 ÷ 45, Quotient = 22222, Remainder = 9 Required no. = 9999999 - 9 = 999990	1 1 1 1	15
28	Length, breadth and height of a room are 828cm, 675 cm, 450cm respectively. Longest tape required to measure the three dimensions of the room = HCF of 828cm, 675 cm, 450cm HCF of 828cm, 675 cm, 450cm = 75 cm Hence, the required longest tape = 75 cm OR Product of two numbers = HCF × LCM	1 2 1	36
	$\therefore \text{ Other number} = \frac{HCF \times LCM}{First number} = \frac{13 \times 1989}{117} = 221$	2	40
29	(-400) + 781 + (-1400) + (-81) + 300 = (-400) + (-1400) + (-81) + 300 + 781 = (-1881) + 1081 = (-800) = 800	1 1 1	73
30	Here, we have to find out if 36, 90, 90 and 75 are in proportion. Product of extremes = $36 \times 75 = 2700$ Product of means = $90 \times 90 = 8100$ So, they are not in continued proportion.	1 1 1	84
31	Distance travelled by scooter in 3 hours = 120 km Speed of scooter = $\frac{\text{Distance}}{\text{Time}} = \frac{120}{3} = 40 \text{ km/h}$ Distance travelled by train in 2 hours = 120 km Speed of train = $\frac{\text{Distance}}{\text{Time}} = \frac{120}{2} = 60 \text{ km/h}$ \therefore Ratio of their speeds = $\frac{40}{60} = \frac{2}{3} = 2:3$ OR	1 1 1	NCERT EXEMPLAR

Let number of large classrooms be 3 parts and small classroom be 4 Here, 4 parts = 20 Here, 4 parts = 20 1 part = 20/4=5 3 puts = 3 × 5 = 15 So, number of large rooms = 15 (a) 11 m, m [n, 11 n (b) Point B (c) line 't' and line 't' T 3 For correct construction of AB = 4.5cm 1 1 1 5 For correct construction of CAB = 4.5cm 1 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1			[
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Let number of large classrooms be 3 parts and small classroom be 4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Here, 4 parts $= 20$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 part = $20/4=5$	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3 parts = $3 \times 5 = 15$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		So, number of large rooms $= 15$	1	
32 (b) Point B 1 141 (c) line 't' and line 't' 1 1 33 For correct construction of AB = 4.5 cm 1 1 33 For correct construction of CD = 5.4 cm 1 153 Por correct construction of 2AB CD 1 153 97 6 of arght angle = $\frac{3}{6} \times 90^9$ or 50^9 1 173 Supplement of $10^9 = 90^9 - 75^9 = 15^9$ 1 173 Supplement of $15^9 = 180^9 - 15^9 = 165^9$ 1 173 500 - 190 - (60 - (20 - 5)) = 101 1 1 19 = 500 - 190 - (60 - 15) - 101 1 1 19 = 500 - 190 - 501 1 1 19 = 465 0.5 1 19 = 500 - 35 0.5 2 40 $\frac{2}{2}$ 4, 65, 9 2 3, 1, 5, 9 2 = 3 1, 1, 1, 5, 3 1 1 19 = 50 - 35 2, 3, 15, 9 2 40 40 Here equired time duration is 360s = 6 minutes 5, 0, 11 1 1 So after 6 minutes is 4.06 pm, all the four			1	
2 (c) line 't' and line 't' 1 11 33 For correct construction of AB = 4.5cm 1 1 34 For correct construction of AB = -0.5 Acm 1 1 34 $\frac{5}{5}$ of a right angle $= \frac{5}{6}$ × 90 ⁰ = 75 ⁰ 1 1 34 $\frac{5}{5}$ of a right angle $= \frac{5}{6}$ × 80 ⁰ = 75 ⁰ 1 1 35 $\frac{5}{500}$ of a right angle $= \frac{5}{6}$ × 80 ⁰ = 75 ⁰ 1 1 36 $\frac{500 - 190 - (60 - 20 - 5)) - 101$ 1 1 $= 500 - 190 - 45 - 101$ 1 1 19 $= 500 - 190 - 45 - 101$ 1 19 19 $= 500 - 190 - 45 - 101$ 1 19 19 $= 500 - 190 - 45 - 101$ 1 19 19 $= 500 - 190 - 551$ 0.5 0.5 0.5 $= \frac{2}{2}$ $\frac{3}{1}$ $\frac{1}{5}$ $\frac{9}{2}$ $\frac{2}{2}$ $\frac{3}{1}$ $\frac{1}{5}$ 1 $= 10 - 190 - 551$ $\frac{5}{2}$ $\frac{1}{1}$ 1.1 19 10 11 $= 2$ $\frac{3}{4}$ $\frac{1}{5}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{5}{2}$ $\frac{5}{2}$	20		1	1.4.1
33 For correct construction of AB = 4.5cm 1 1 34 For correct construction of CD = 5.4cm 1 153 5 of a right nugle = $\frac{5}{6} \times 90^{\circ} - 75^{\circ}$ 1 1 34 Complement of $60^{\circ} = 90^{\circ} - 75^{\circ} = 15^{\circ}$ 1 173 Supplement of $15^{\circ} = 180^{\circ} - 15^{\circ} = 165^{\circ}$ 1 1 173 35 500 - [90 - (60 - (20 - 5)] - 10] 1 1 19 5.3 500 - [90 - (60 - 13) - 10] 1 1 19 5.4 465 0.5 0.5 0.5 7 The required time duration = LCM of 8s, 12s, 15s and 18s 2 40 $\frac{2}{2}$ 8, 12, 15, 18 2 40 $\frac{2}{2}$ 8, 12, 5, 9 2 40 $\frac{3}{3}$ 1, 1, 5, 3 5 1 1 $\frac{1}{1}$ 1, 1, 1, 1 1 1 1 40 $\frac{2}{2}$ 8, 12, 5, 18 2 40 40 $\frac{1}{1}$ 1, 1, 1, 1 1 1 1 1 $\frac{2}{3}$ 1, 1, 5, 1 1 1 1 </td <td>32</td> <td></td> <td>1</td> <td>141</td>	32		1	141
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(c) fine t and fine f	1	
For correct construction of 2AB - CD 1 34 $\frac{5}{6}$ of a right angle $= \frac{5}{9} \times 90^{0} = 75^{0}$ 1 34 Complement of $60^{0} = 90^{0} - 75^{0} = 15^{0}$ 1 35 $500 - 190 - (60 - (20 - 5)) = 101$ 1 $500 - 190 - (60 - 15) = 100$ 1 1 $500 - 190 - 6(0 - 15) = 101$ 1 1 $500 - 190 - 45 - 101$ 1 1 $= 500 - 190 - 551$ 0.5 0.5 $= 465$ 0.5 0.5 $\frac{2}{2}$ $3, 15, 9$ 2 $\frac{2}{2}$ $1, 1, 5, 1$ 1 1 $1, 1, 5, 1$ 1 $\frac{2}{2}$ $3, 15, 9$ 2 $\frac{3}{3}$ $1, 1, 5, 1$ 1 1 $1, 1, 5, 1$ 1 1 $1, 1, 5, 1$ 1 1 $1, 1, 5, 1$ 1 40 1 $1, 1, 5, 1$ 1 1 1 $1, 1, 5, 1$ 1 1 1 $1, 1, 5, 1$ 1 1 1 $1, 5, 1$ 1 1 1 <td< td=""><td></td><td>For correct construction of $AB = 4.5$cm</td><td>1</td><td></td></td<>		For correct construction of $AB = 4.5$ cm	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33	For correct construction of $CD = 5.4$ cm	1	153
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		For correct construction of 2AB – CD	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24		1	170
$36 \frac{1}{36} = \frac{1}{36} + \frac{1}{3$	34		1	1/3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Supplement of $15^0 = 180^0 - 15^0 = 165^0$	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$500 - [90 - {60 - (20 - 5)} - 10]$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	35		1	19
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.5	
The required time duration = LCM of 8s, 12s, 15s and 18s $ \frac{2 8, 12, 15, 18}{2 4, 6, 15, 9} \\ \frac{2}{2 2, 3, 15, 9} \\ \frac{3}{2 1, 1, 5, 3} \\ \frac{3}{5 1, 1, 5, 1} \\ 1, 1, 1, 1 $ LCM = 2 × 2 × 2 × 3 × 3 × 5 = 360 The required time duration is 360s = 6 minutes So, after 6 minutes i.e 4.06 pm, all the four bells will toll together again. LHS: a ÷ (b ÷ c) = (-225) + [15 + (-3)] = (-225) ÷ (-5) = 45 RHS: (a + b) ÷ (a ÷ c) = [(-225) + 15] + [(-225) ÷ (-5)] = 45 RHS: (a + b) ÷ (a ÷ c) = [(-225) + 15] + [(-225) ÷ (-5)] = (-15) + 45 = $\frac{-15}{45} = \frac{-1}{3}$ So, LHS \neq RHS 37 (a) $242 \times (-95) + 242 \times (-4) - 242$ 1 = 242(-95 - 4 - 1) 1 $= (-24200)$ (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 1 Distance covered by train in 5 hours =550 km Distance covered by train in 1 hour = 550/5 = 110 km (a) Distance covered by train in 1 hours =550/5 = 110 km (b) No. of hours required to covered 330km = 330 ÷ 110 = 3 hours 1 (b) No. of hours required to covered 330km = 330 ÷ 110 = 3 hours 1 M 38 38 38 38 38 39 39 30 30 30 40 30 40 30 40 30 40 30 40 40 40 40 40 40 40 40 40 4				
$36 \begin{vmatrix} \frac{2}{2} & \frac{8}{8}, \frac{12}{2}, \frac{15}{5}, \frac{9}{2} \\ \frac{2}{2}, \frac{2}{3}, \frac{3}{3}, \frac{15}{5}, 9 \\ \frac{3}{3} & \frac{1}{1}, \frac{1}{5}, 5, \frac{3}{3} \\ \frac{3}{5} & \frac{1}{1}, \frac{1}{5}, \frac{5}{1} \\ \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1} \\ LCM = 2 \times 2 \times 2 \times 3 \times 5 = 360 \\ The required time duration is 360s = 6 minutes \\ So, after 6 minutes i.e 4.06 pm, all the four bells will toll together again. 1 \\ \frac{1}{1} \\ \frac{1}{1}$			0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3 1, 3, 15, 9	2	
30 $\frac{5}{1}$ 1, 1, 5, 1 1 1, 1, 1, 1 LCM = 2 × 2 × 2 × 3 × 3 × 5 = 360 The required time duration is 360s = 6 minutes 1 1 So, after 6 minutes i.e 4.06 pm, all the four bells will toll together again. 1 1 LHS: $a \div (b \div c) = (-225) \div [15 \div (-3)] = (-225) \div (-5) = 45$ 2 67 So, LHS: $(a \div b) \div (a \div c) = [(-225) \div 15] \div [(-225) \div (-5)]$ 2 67 So, LHS ≠ RHS OR 1 1 37 $(a) 242 \times (-95) + 242 \times (-4) - 242$ 1 65 $= 242(-95 - 4 - 1)$ 1 65 65 (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 1 65 66 Distance covered by train in 5 hours =550 km 2 86 86 (a) Distance covered by train in 2½ hours = 110 × 5/2 = 275 km 1 67 38 The ratio of vertical pole and its shadow is = 7:2 86 86 (a) Distance covered by train in 2½ hours = 110 × 5/2 = 275 km 1 89 x = (7 × 2.4) / 2 = 8.4 2 89 89	26			10
$\frac{1}{1, 1, 1, 1}$ $LCM = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 360$ The required time duration is $360s = 6$ minutes So, after 6 minutes i.e 4.06 pm, all the four bells will toll together again. $\frac{1}{1}$ $\frac{1}{1}$	30			40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
The required time duration is $360s = 6$ minutes So, after 6 minutes i.e 4.06 pm, all the four bells will toll together again.1 1LHS: $a \div (b \div c) = (-225) \div [15 \div (-3)] = (-225) \div (-5) = 45$ RHS: $(a \div b) \div (a \div c) = [(-225) \div 15] \div [(-225) \div (-5)]$ $= (-15) \div 45 = \frac{-15}{45} = \frac{-1}{3}$ 26737 OR (a) $242 \times (-95) + 242 \times (-4) - 242$ $= 242(-95 - 4 - 1)$ $= 242 \times (-100)$ $= (-24200)$ (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 165Distance covered by train in 5 hours =550 km Distance covered by train in 1 hour = 550/5 = 110 km (a) Distance covered by train in 2½ hours = 110 $\times 5/2 = 275$ km (b) No. of hours required to covered 330km = 330 $\div 110 = 3$ hours8638The ratio of vertical pole and its shadow is = 7:2 Hence, 7 : 2 = x : 2.4 By cross multiplication $x = (7 \times 2.4)/2 = 8.4$ 289				
So, after 6 minutes i.e 4.06 pm, all the four bells will toll together again. 1 LHS: $a \div (b \div c) = (-225) \div [15 \div (-3)] = (-225) \div (-5) = 45$ 2 RHS: $(a \div b) \div (a \div c) = [(-225) \div 15] \div [(-225) \div (-5)]$ 2 $= (-15) \div 45 = \frac{-15}{45} = \frac{-1}{3}$ 2 So, LHS \neq RHS 0R (a) $242 \times (-95) + 242 \times (-4) - 242$ 1 $= 242(-95 - 4 - 1)$ 1 $= 242 \times (-100)$ 1 $= (-24200)$ 1 (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 1 Distance covered by train in 5 hours = 550 km 2 Distance covered by train in 1 hour = 550/5 = 110 km 2 (a) Distance covered by train in 2½ hours = 110 $\times 5/2 = 275 \text{ km}$ 1 (b) No. of hours required to covered 330km = 330 $\div 110 = 3$ hours 1 M OR 2 $x = (7 \times 2.4) / 2 = 8.4$ 2				
300, and 0 minutes for 100 pm, an fact out of the four order diginity 1 LHS: $a \div (b \div c) = (-225) \div [15 \div (-3)] = (-225) \div (-5) = 45$ 2 RHS: $(a \div b) \div (a \div c) = [(-225) \div 15] \div [(-225) \div (-5)]$ 2 $= (-15) \div 45 = \frac{-15}{45} = \frac{-1}{3}$ 2 So, LHS ≠ RHS 0R (a) 242 × (-95) + 242 × (-4) - 242 1 $= 242(-95 - 4 - 1)$ 1 $= 242 \times (-100)$ 1 $= (-24200)$ 65 (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 1 Distance covered by train in 5 hours = 550 km 2 Distance covered by train in 1 hour = 550/5 = 110 km 2 (a) Distance covered by train in 2½ hours = 110 × 5/2 = 275 km 1 (b) No. of hours required to covered 330km = 330 ÷ 110 = 3 hours 1 38 The ratio of vertical pole and its shadow is = 7:2 89 Hence, 7 : 2 = x : 2.4 89 2 By cross multiplication 2 89 $x = (7 \times 2.4) / 2 = 8.4$ 2		1	1	
LHS: $a \div (b \div c) = (-225) \div [15 \div (-3)] = (-225) \div (-5) = 45$ 2 RHS: $(a \div b) \div (a \div c) = [(-225) \div 15] \div [(-225) \div (-5)]$ 2 $= (-15) \div 45 = \frac{-15}{45} = \frac{-1}{3}$ 2 So, LHS \neq RHS OR (a) $242 \times (-95) + 242 \times (-4) - 242$ 1 $= 242(-95 - 4 - 1)$ 1 $= 242 \times (-100)$ 1 $= (-24200)$ 1 (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 1 Distance covered by train in 5 hours = 550 km 2 Distance covered by train in 1 hour = 550/5 = 110 km 2 (a) Distance covered by train in 1 hour = 550/5 = 110 km 2 (b) No. of hours required to covered 330km = 330 ÷ 110 = 3 hours 1 <i>OR</i> 1 0 (b) No. of hours required to covered 330km = 7:2 4 Hence, 7 : 2 = x : 2.4 2 89 y cross multiplication 2 89 $x = (7 \times 2.4) / 2 = 8.4$ 2 89		So, after 6 minutes i.e 4.06 pm, all the four bells will toll together again.		
RHS: $(a \div b) \div (a \div c) = [(-225) \div 15] \div [(-225) \div (-5)]$ $= (-15) \div 45 = \frac{-15}{45} = \frac{-1}{3}$ 2 67 37 OR (a) $242 \times (-95) + 242 \times (-4) - 242$ = 242(-95 - 4 - 1) $= 242 \times (-100)$ = (-24200) 1 1 0 65 (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 1 65 Distance covered by train in 5 hours = 550 km Distance covered by train in 1 hour = 550/5 = 110 km (a) Distance covered by train in 2½ hours = 110 $\times 5/2 = 275 \text{ km}$ 2 86 (a) Distance covered by train in 2½ hours = 110 $\times 5/2 = 275 \text{ km}$ 1 1 86 86 38 The ratio of vertical pole and its shadow is = 7:2 Hence, 7 : 2 = x : 2.4 By cross multiplication $x = (7 \times 2.4) / 2 = 8.4$ 2 89		1110 + (1 + 1) + (-225) + [15 + (-2)] + (-225) + (-5) + 45		
$= (-15) \div 45 = \frac{-15}{45} = \frac{-1}{3}$ So, LHS \neq RHS $(a) 242 \times (-95) + 242 \times (-4) - 242 = 242(-95 - 4 - 1) = 242 \times (-100) = (-24200)$ (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ Distance covered by train in 5 hours =550 km Distance covered by train in 1 hour = 550/5 = 110 km (a) Distance covered by train in 2½ hours = 110 \times 5/2 = 275 km (b) No. of hours required to covered 330km = 330 \div 110 = 3 hours $(a) Distance covertial pole and its shadow is = 7:2$ Hence, $7: 2 = x: 2.4$ By cross multiplication $x = (7 \times 2.4) / 2 = 8.4$ $(b) No. = (7 \times 2.4) / 2 = 8.4$ $(c) No. = (7 \times 2.4) / 2 = 8.4$			2	
$= (-15) \div 45 = \frac{-15}{45} = \frac{-1}{3}$ So, LHS \neq RHS $(a) 242 \times (-95) + 242 \times (-4) - 242$ $= 242(-95 - 4 - 1)$ $= 242 \times (-100)$ $= (-24200)$ (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ Distance covered by train in 5 hours = 550 km Distance covered by train in 1 hour = 550/5 = 110 km (a) Distance covered by train in 2½ hours = 110 \times 5/2 = 275 km (b) No. of hours required to covered 330km = 330 $\div 110 = 3$ hours (b) No. of hours required to covered 330km = 330 $\div 110 = 3$ hours (c) No. of hours required to covered 330km = 330 $\div 110 = 3$ hours (c) No. of hours required to covered 330km = 320 $\div 110 = 3$ hours (c) No. of hours required to covered 330km = 320 $\div 110 = 3$ hours (c) No. of hours required to covere 330km = 320 $\div 110 = 3$ hours (c) No. of hours required to covere 330km = 320 $\div 110 = 3$ hours (c) No. of hours required to covere 330km = 320 $\div 110 = 3$ hours (c) No. of hours required to covere 330km = 320 $\div 110 = 3$ hours (c) No. of hours required to covere 330km = 320 $\div 110 = 3$ hours (c) No. of hours required to covere 330km = 320 $\div 120 = 3$ hours (c) No. of hours required to covere 330km = 320 $\div 120 = 3$ hours (c) No. of hours required to covere 330km = 320 $\div 120 = 3$ hours (c) No. of hours required to covere 330km = 320 $\div 120 = 3$ hours (c) No. of hours required to covere 330km = 2 km (c) No. of hours required to covere 330km = 32 $\div 120 = 3$ hours (c) No. of hours required to covere 330km = 2 km (c) No. of hours required to covere 330 hours (c) No. of hours required to covere 330 hours (c) No. of hours required to covere 330 hours (c) No. of				67
37 So, LHS \neq RHS 0R 1 37 (a) $242 \times (-95) + 242 \times (-4) - 242$ 1 $= 242(-95 - 4 - 1)$ 1 1 $= 242 \times (-100)$ 1 65 (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 1 65 Distance covered by train in 5 hours = 550 km Distance covered by train in 1 hour = 550/5 = 110 km 2 86 (a) Distance covered by train in 2½ hours = $110 \times 5/2 = 275$ km 1 1 (b) No. of hours required to covered 330km = 330 ÷ 110 = 3 hours 1 86 38 The ratio of vertical pole and its shadow is = 7:2 4 89 Hence, 7 : 2 = x : 2.4 2 89 89 $x = (7 \times 2.4)/2 = 8.4$ 2 89		$=(-15) \div 45 = \frac{-15}{-1} = \frac{-1}{-1}$	2	01
37 OR 1 (a) $242 \times (-95) + 242 \times (-4) - 242$ 1 $= 242(-95 - 4 - 1)$ 1 $= 242 \times (-100)$ 1 $= (-24200)$ 1 (b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 1 Distance covered by train in 5 hours =550 km Distance covered by train in 1 hour = 550/5 = 110 km 2 (a) Distance covered by train in 2½ hours = $110 \times 5/2 = 275$ km 1 (b) No. of hours required to covered 330km = 330 ÷ 110 = 3 hours 1 38 The ratio of vertical pole and its shadow is = 7:2 2 Hence, $7 : 2 = x : 2.4$ 2 By cross multiplication 2 $x = (7 \times 2.4) / 2 = 8.4$ 2		T 5 5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(a) $242 \times (-95) + 242 \times (-4) - 242$	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccc} = (-24200) & & & & & & & & & & & & & & & & & & $			1	
(b) $(-1)^9 + (-1)^{10} = (-1) + 1 = 0$ 1Distance covered by train in 5 hours =550 km2Distance covered by train in 1 hour = 550/5 = 110 km2(a) Distance covered by train in 2½ hours = $110 \times 5/2 = 275$ km1(b) No. of hours required to covered 330km = $330 \div 110 = 3$ hours1OR138The ratio of vertical pole and its shadow is = 7:2Hence, 7 : 2 = x : 2.42By cross multiplication2x = $(7 \times 2.4)/2 = 8.4$ 2			I	65
Distance covered by train in 5 hours =550 km Distance covered by train in 1 hour = $550/5 = 110$ km286(a) Distance covered by train in $2\frac{1}{2}$ hours = $110 \times 5/2 = 275$ km11(b) No. of hours required to covered 330 km = $330 \div 110 = 3$ hours11 OROR 1138The ratio of vertical pole and its shadow is = 7:2289Hence, $7: 2 = x: 2.4$ 289 $x = (7 \times 2.4) / 2 = 8.4$ 289			1	
Distance covered by train in 1 hour = $550/5 = 110 \text{ km}$ 286(a) Distance covered by train in $2\frac{1}{2}$ hours = $110 \times 5/2 = 275 \text{ km}$ 11(b) No. of hours required to covered $330 \text{ km} = 330 \div 110 = 3 \text{ hours}$ 11 OROR 11 Weak State 			1	
(a) Distance covered by train in $2\frac{1}{2}$ hours = $110 \times 5/2 = 275$ km (b) No. of hours required to covered 330 km = $330 \div 110 = 3$ hours OR 38 The ratio of vertical pole and its shadow is = 7:2 Hence, $7: 2 = x: 2.4$ By cross multiplication $x = (7 \times 2.4) / 2 = 8.4$ 2 89			<i>.</i>	
$(b) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(b) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 330 \div 110 = 3 hours$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 330 \div 100 $ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hours required to covered 330km = 7:2$ $(c) No. of hour$				86
38OR38The ratio of vertical pole and its shadow is = 7:2Hence, $7: 2 = x: 2.4$ By cross multiplication $x = (7 \times 2.4) / 2 = 8.4$ 2289				
38The ratio of vertical pole and its shadow is = 7:2 Hence, $7: 2 = x: 2.4$ By cross multiplication $x = (7 \times 2.4) / 2 = 8.4$ 289289		(b) No. of hours required to covered 330 km = $330 \div 110 = 3$ hours	1	
Hence, $7: 2 = x: 2.4$ 2By cross multiplication2 $x = (7 \times 2.4) / 2 = 8.4$ 2		OR		
Hence, $7: 2 = x: 2.4$ 2 89 By cross multiplication 2 2 $x = (7 \times 2.4) / 2 = 8.4$ 2 2	38	The ratio of vertical pole and its shadow is $= 7:2$		
By cross multiplication289 $x = (7 \times 2.4) / 2 = 8.4$ 2		*		
$x = (7 \times 2.4) / 2 = 8.4$			2	89
		• •	-	0,
Length of pole 8.4m		$x = (7 \times 2.4) / 2 = 8.4$	r	
		Length of pole 8.4m	<i>L</i>	

	(a) $A - D - B$, $A - F - C$ (Any relevance answer)	1	
39	(b) Point F	1	142
39	(c) Line m, r, p	1	142
	(d) (p, l), (n, r) (Any other correct answer)	1	
	(a) ∠5	1	
40	(b) ∠3, ∠4, ∠5, ∠6 (Any two)	1	179
40	(c) $\angle 1$, $\angle 7$ or $\angle 2$, $\angle 8$	1	179
	(d) ∠7	1	