							ANNEX	URE -	A
	DAV PUBLIC SCHOOLS, ODISHA								
PERIC	DDIC ASSESSMENT	-II (2023-	-24) CLA	ASS: X S	UBJEC	Г: МА	ГНЕМАТІ	CS	
		BLUE	PRINT O	F QUES	TION PA	APER			
SL NO.	CHAPTERS / UNITS	MARKS ALLOTTED IN SYLLABUS	1 MARK (MCQ/A&R)	2 MARKS (SA-I)	3 MARKS (SA-II)	5MARKS (LA)	4 MARK(CBQ)	TOTAL MARKS	TOTAL NO. OF QUESTIONS
1	Real number	10	1+1AR		1	1		10	4
2	polynomial	9	1+1AR		1*		1	9	4
3	Linear equation in two Variable	10	2		1	1*		10	4
4	Triangle	9	2	1*		1		9	4
5	Circle	7	2	1	1			7	4
6	Introduction to Trigonometry	10	3	1 + 1*	1*			10	6
7	Area related to circle	7	3			••••	1	7	4
8	Statistics	10	2		1	1*		10	4
9	Probability	8	2	1			1	8	4
	G.TOTAL	80	20	5	6	4	3	80	38

Г

(*) represents alternative choice questions.

ANNEXURE -B

DAV PUBLIC SCHOOLS, ODISHA

PERIODIC ASSESSMENT-II (2023-24) CLASS: X SUBJECT: MATHEMATICS

QUESTIONWISE ANALYSIS

Q .No.	Chapters / Units	Forms of Question (MCQ, AR, SA-I , SA-II, LA, CBQ)	Marks Allotted	Typology of Questions (Knowledge (K), Understanding (U), Applications (A),Hots(H)&Skils(S)etc.)
1	Real number	MCQ	1	Applications (A)
2	Linear equation in two Variable	MCQ	1	Applications (A)
3	Triangle	MCQ	1	Understanding (U)
4	circle	MCQ	1	Skills(S)
5	Linear equation in two Variable	MCQ	1	Applications (A)
6	Triangle	MCQ	1	Hots(H)
7	Area related to circle	MCQ	1	Knowledge (K)
8	Statistics	MCQ	1	Knowledge (K)
9	polynomial	MCQ	1	Understanding (U)
10	circle	MCQ	1	Skils(S)
11	Introduction to Trigonometry	MCQ	1	Knowledge (K)
12	Area related to circle	MCQ	1	Understanding (U)
13	Area related to circle	MCQ	1	Hots(H)

14	Statistics	MCQ	1	Skils(S)
15	Probability	MCQ	1	Applications (A)
16	Introduction to Trigonometry	MCQ	1	Understanding (U)
17	Probability	MCQ	1	Hots(H)
18	Introduction to Trigonometry	MCQ	1	Skils(S)
19	Real number	AR	1	Understanding (U)
20	polynomial	AR	1	Knowledge (K)
21	Triangle	SA-I	2	Knowledge (K)
22	Circle	SA-I	2	Skills(S)
23	Introduction to Trigonometry	SA-I	2	Understanding (U)
24	Probability	SA-I	2	Knowledge (K)
25	Introduction to Trigonometry	SA-I	2	Applications (A)
26	Real number	SA-II	3	Hots(H)
27	polynomial	SA-II	3	Knowledge (K)
28	circle	SA-II	3	Understanding (U)
29	circle	SA-II	3	Understanding (U)
30	Introduction to Trigonometry	SA-II	3	Knowledge (K)
31	Statistics	SA-II	3	Understanding (U)
32	Real number	LA	5	Applications (A)

33	Triangle	LA	5	Understanding (U)
34	Linear equation in two Variable	LA	5	Skills(S)
35	statistics	LA	5	Applications (A)
36	polynomial	CBQ	4	Skills(S)
37	Probability	CBQ	4	Applications (A)
38	Area related to circle	CBQ	4	Applications (A)

		ANNEXURE –C		
	DAV PUBLIC SCHOOLS, ODISHA			
	PERIODIC ASSESSMENT-II (2023-24) CLASS: X SUBJECT: MATHEMATICS			
	MARKING SCHEME SET-1			
	TIME ALLOWED: 3 HOURS MAX. MARKS: 80			
Q. NO.	VALUE POINTS	5	MARKS ALLOTTE D	

1	(c) x^3y^3	1
2	(a) 3	1
3	(b) 4	1
4	(d) $\sqrt{3}$	1
5	(b) 1	1
6	(c) <b=<d< td=""><td>1</td></b=<d<>	1
7	(b)8cm	1
8	(a)9	1
9	(a)-1	1
10	(a)11cm	1
11	$(c)A=B=45^{\circ}$	1
12	(a) 8.4 cm	1
13	(a)10m	1
14	(b)24.5	1
15	(d)1/9	1
16	(b)3	1
17	(b) 1/4	1
18	(a) 0	1

19	(a) Both A and R are true and R is the correct explanation of A.	1
20	(a) Both A and R are true and R is the correct explanation of A.	1

SEC-B

21	ΔACB~ΔADC (AA)	1/2
	$\frac{AC}{AD} = \frac{AB}{AC}$	
	$\frac{AB}{AB} = \frac{AB}{AB}$	1
	3 6	1/
	AB=12cm	1/2
		1
	$\frac{11}{2} \Delta P Q R,$	1
	$\Delta I = ZZ$ $\rightarrow PP = PO (In a triangle sides ennesite to equal angles are equal)$	1
	\rightarrow PN = PQ (in a triangle sides opposite to equal angles are equal) APOS ~ ATOP (SAS criterion)	1
22	Loin OB_now in right angled AOMB_we have	1
22	$OB^2 = 5^2 + 12^2 = 169$	T
	OB=13(12 =105)	
	In right AOBP, we have	
	$OP^2 = OB^2 + BP^2$	1
	$= 13^2 + 20^2 = 569$	
	OP= 23.66cm	
23	$\sin\theta = \frac{a}{b}$	
	$C_{00} \theta_{-1} \sqrt{1} = \frac{a^2}{b^2 - a^2}$	4
	$\cos b - \sqrt{1 - \frac{b^2}{b^2}} = b$	1
	$\operatorname{Tan}\theta = \frac{\sin\theta}{\cos\theta} = \frac{u}{\sqrt{b^2 - a^2}}$	1
	OR	-
	34	1
	$Tan\theta = \frac{3k}{4k}$	
	$\sin\theta = \frac{3k}{3k} = \frac{3}{3k} \cos\theta = \frac{4k}{3k} = \frac{4}{3k}$	1
	5k 5 5k 5 1 1 5 5 35	
	+	
24	Total outcome = 36	
	Possible outcome are = (1,2) , (1,3) , (1,5) , (2,1) , (3,1) , (5,1)	1
	No. of possible outcome = 6	
	P(E) = 6/36	1
	= 1/6	-
25	If sin x +cos y = 1 and if $x = 30^{\circ}$ and y is an acute angle,	1
	$\sin 30^0 + \cos y = 1$	
	$\frac{1}{1} + \cos y = 1$	
	$\frac{2}{16}$	1
	$\cos y = \frac{1}{2}$	T
	$Y = 60^{\circ}$	

SEC-C

26	Let us assume that $\sqrt{5}$ is a rational number. so it can be expressed in the form of $\frac{p}{q}$, p and q are co-prime integers , q $\neq 0$	1
	Ч Ч	1

	$\frac{p}{2}=\sqrt{5}$	
	$n^2 = 5a^2 - \dots - (1)$	
	$p^2 = 5q$ (1) n^2 is a multiple of 5	
	p is a multiple of 5	1
	Let n=5m	1
	$n^2 - 75m^2$	
	$p = 25m^2$ $5a^2 - 25m^2$	
	$a^2 - 5m^2$	
	q^2 is a multiple of 5	
	q is a multiple of 5	1
	as p and q have common factor 5 , this is a contradiction to our assumption, so $\sqrt{5}$ is	
	not a rational number it is an irrational number	
27		1
27	$p(x) = x^2 - px - p - c$	1
	$\alpha + \beta = \beta \text{ and } \alpha \beta = (-\beta - c)$	1
	$(\alpha + 1)(\beta + 1) = 0$	1
	-p-c+n+1 = 0	1
	c=1	
	OR	
	$p(x)=4x^2+4x+1$	
	$\alpha + \beta = \frac{-b}{-b} = \frac{-4}{-b} = -1$	1
	$a^{a}_{a} = a^{a}_{c} = a^{a}_{c}$	1
	$\alpha p = \frac{1}{a} = \frac{1}{4}$	1
	Zeros are 2α and 2β	1
	Sum = $2(\alpha + \beta) = 2(-1) = -2$ Product = $2\alpha - 2\beta = 4\alpha\beta = 4 \times 1/4 = 1$	1
	Product – $2u.2p - 4up - 4x 1/4 - 1$ Polynomial is $k(x^2+2x+1)$	
28	<a+<c=180°< td=""><td>1</td></a+<c=180°<>	1
	x+y=83(1)	1
	<b+<d=180°< td=""><td>1</td></b+<d=180°<>	1
	4x+y=182(2)	1
		1
	x=33°y=50°	
	so <a=70°,<b=53°,<c=110°,<d=127°< td=""><td></td></a=70°,<b=53°,<c=110°,<d=127°<>	
20		
29		
		1
		1
	A = C B (Radius perpendicular to tangent)	
	OP=OP (common side)	
	$\Delta OPA \cong \Delta OPB$ (by RHS congrunce rule)	1
	PA=PB (by CPCT)	*

30	$5sin^2 30 + cos^2 45 + 4tan^2 60$	
	2sin30.cos60 + tan45	
	$=\frac{5\cdot\left(\frac{1}{2}\right)^{2}+\frac{1}{\sqrt{2}}^{2}+4\cdot\sqrt{3}^{2}}{2\cdot\frac{1}{2}\cdot\frac{1}{2}+1}=\frac{55}{6}$	2
	OR	
	$\frac{1}{1+1+2} + \frac{1}{1+1+2} - \cos^2 45$	2
	$cot^2 30$ $sin^2 60$	1
	$=\frac{1}{3} + \frac{4}{3} + \frac{1}{4} - \frac{13}{6}$	
31	Modal class =40-50	1
	Mode=l+ $(\frac{f_{1-f_0}}{2f_1-f_0-f_2})$ xh	1
	$=40+(\frac{28-12}{2.28-12-20})\times10$	1
	$=40+\frac{20}{3}=46.666$	

32	$336=2^4 \times 3 \times 7$	1
	$240=2^4 \times 3 \times 5$	
	$96=2^5 \times 3$	1
	HCF of 336,240,96=48	1
	Now number of room for participatent in mathematics $=\frac{336}{48}=7$	1
	number of room for participatent in physics $=\frac{240}{48}=5$	1
	number of room for participatent in biology= $\frac{96}{48}$ =2	
	total room= $7+5+2=14$	
		1
33	For correct statement	1
	Correct proof	2
		1
		1

	In a trapezium ABCD AB // DC // EF, WE	1
	have to prove, $\frac{AE}{FD} = \frac{BF}{FC}$ Join AC which	
	intersects EF at G	
	Proof IN	
	$\therefore \frac{FC}{BF} = \frac{CG}{AG}$ (Using Thales Theorem)	
	$\Rightarrow \frac{BF}{FC} = \frac{AG}{CG}(ii)$	
	(Taking reciprocals)	
	△ADCEG ∥ DC	
	$\therefore \frac{AE}{ED} = \frac{AG}{GC} \dots (ii) (By \text{ Thales Theorem})$	
	From (i) and (ii) we get $\frac{AE}{ED} = \frac{BF}{FC}$	
34	Let the CP of the table be Rs x and that of the chair be Rs y.	
	Case I: 110x + 125y = 105000(i)	1
	Case II: 125x + 110y = 106500(ii)	1
	From (i) and (ii), we have	
	235(x + y) = 211500	1
	$\Rightarrow x + y = 900 \dots (iii)$	
	Subtracting (i) from (ii), we have	
	15(x - y) = 1500	1
	$\Rightarrow x - y = 100 \dots (iv)$	-
	Solving (iii) and (iv), we get	
	x = 500 and $y = 400$	1
	Thus, CP of table = Rs 500 and CP of chair = Rs 400. \mathbf{OR}	1
	Let the cost of full and half first class fare be Rs. x and Rs. x/2 respectively and reservation	1
	I charges be Rs. Y per ticket.	
	Case I The cost of one reserved first class ticket from the stations A to B= Rs 2530	1
	\Rightarrow x + y = 2530	
	Case II The cost of one reserved first class ticket and one reserved first class half ticket	1
	1000 Stations A to B = Rs. 3810	
	$\Rightarrow 3x + 4y = 7620$ $\Rightarrow x = 2500 \text{ and } y = 20$	1
	\rightarrow x = 2500 and y = 50 Hence full first class fare from stations A to B is Bs 2500 and the recordation for a ticket	
	is Rs 30	1
35	Correct table	2
55	Median = 32.5	2
	The median class = $30 - 40$	
	$L = 30, h = 10, f = 12, C.F = 14 + f_1$	
	Median=L+ $\left(\frac{n}{2}-cf\right)$ ×h	1
	$\Rightarrow 325 = 30 + (20 - (14 + f1))/12 \times 10$	
	$2.5 \times 12 = (6 - f_1) \times 10$	
	$30=(6-f_1)\times 10$	

3=6-f1						
f1=3						1
Given	Given Sum of fraguoncias = 40					
$f_1 + 5 + 9 + 1$	$12 + f_2 + 3 + 2 =$	= 40				
3 + 5 + 9 + 1	$2 + f_2 + 3 + 2 =$	= 40				
$34 + f_2 = 40$						1
$f_2 = 40 - 34$	$f_2 = 40 - 34 = 6$					
$f_1 = 3 \text{ and } f_2$	= 6					
Or						
Class	xi	di	Fi	fidi		
interval						3
0-10	5	-40	3	-120		
10-20	15	-30	5	-150		
20-30	25	-20	7	-140		
30-40	35	-10	10	-100		
40-50	45	0	12	100		
50-60	55	10	15	150		
60-70	65	20	12	240		
70-80	75	30	6	180		
80-90	85	40	2	80		
90-100	95	50	8	400		
			$\Sigma fi=80$	$\sum xifi=540$		
	€fidi		I			1
Mean = $a+$	€fi					
=45+	$\frac{540}{80} = 45 + 6.75$	5=51.75				1
			SEC-E			
(i) parabola						1
(ii) initially,	(ii) initially, at $t = 0$, $h=48$					2
k=48.	k=48.					

OR

	When annie touches the pool , h=0ft -16t ² +8t+48=0 => 2t ² -t-6=0 => t=2 or t=-3/2(not possible)	
	Hence, $t=2second$ (iii) $Q(t) = k (t^2 - t - 6)$	1
37	(i)RR,RB,RG,GR,GB,GG,YR,YB,YG	1
	(ii)Rs.330	2
	Rs. 385	1
	(iii)1/9	1
38	(i)200mm	1
	(ii)77mm ²	2
	4 revolution	4
	(iii)20 π = 62.8mm	1

		ANNEXURE –C		
	DAV PUBLIC SCHOOLS, ODISHA			
	PERIODIC ASSESSMENT-II (2023-24) CL	ASS: X SUBJECT: MATHEM	ATICS	
	MARKING SCHEME SET-11			
	TIME ALLOWED: 3 HOURS MAX. MARKS: 80			
Q. NO.	VALUE POINTS		MARKS ALLOTTE D	

1	(a)11cm	1
2	(d) No solution	1
3	(b) 4	1
4	(c)55°	1
5	(b) 1	1
6	(c) <b=<d< td=""><td>1</td></b=<d<>	1
7	(a)9	1

8	(a)-1	1
9	(a)3,140	1
10	(c)A=B=45°	1
11	(b)8cm	1
12	(a) 8.4 cm	1
13	(a)10m	1
14	(b)12	1
15	(d)1/9	1
16	(b)3	1
17	(b) 1/4	1
18	() 5/12	1
19	(a) Both A and R are true and R is the correct explanation of A.	1
20	(a) Both A and R are true and R is the correct explanation of A.	1

SEC-B

21	Q23 OF SET-1	2
22	Q21 OF SET-1	2
23	Q22 OF SET-1	2
24	SAME AS Q24 OF SET-1	2
25	$a\cos\theta+b\sin\theta=m$ $a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta+2ab\cos\theta=m^{2}(1)$ $a\sin\theta-b\cos\theta=n$ $a^{2}\sin^{2}\theta+b^{2}\cos^{2}\theta-2ab\cos\theta\sin\theta=n^{2}(2)$ Add (1) and (2) $a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta+2ab\cos\theta\sin\theta+a^{2}\sin^{2}\theta+b^{2}\cos^{2}\theta-2ab\cos\theta\sin\theta$ $=m^{2}+n^{2}$	1

SEC-C

26	Now, As Per Question,	1
	x+y=10(1)	
	0.5x+0.25y=0.4(10)	1
	=> 0.5x+0.25(10-x)=4	1
	=> x=6, y=4	1
	Therefore Required Amount of solutions of acid to make a 40% acid solution will	

	be for 50%= 6 litres for 25%= 4litres.	
27	SAME AS Q26 OF SET-1	3
28	SAME AS Q27 OF SET-1	3
29	SAME AS Q29 SET-1	3
30	SAME AS Q30 OF SET-1	3
31	SAME AS Q31 OF SET-1	3

SEC-D

32	SAME AS Q34 OF SET-1	5
33	SAME AS Q32 OF SET-1	5
34	SAME AS Q33 OF SET-1	5
35	SAME AS Q35 OF SET-1	5

SEC-E

36	SAME AS Q36 OF SET-1	4
37	SAME AS Q37 OF SET-1	4
38	SAME AS Q38 OF SET-1	4